Skip to content

paiml/paiml-mcp-agent-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PMAT - Pragmatic AI Labs Multi-language Agent Toolkit

Documentation Crates.io License: MIT

Zero-configuration AI context generation for any codebase. Analyze code quality, complexity, and technical debt across 17+ programming languages with extreme quality enforcement and Toyota Way standards.

📖 Read the PMAT Book - Complete documentation, tutorials, and guides


Quick Start

Installation

# Rust (recommended)
cargo install pmat

# macOS/Linux
brew install pmat

# Windows
choco install pmat

# npm (global)
npm install -g pmat-agent

Basic Usage

# Analyze codebase and generate AI-ready context
pmat context

# Analyze complexity
pmat analyze complexity

# Grade technical debt (A+ through F)
pmat analyze tdg

# Find Self-Admitted Technical Debt
pmat analyze satd

Git Hooks Setup

Install pre-commit hooks for automatic quality enforcement:

# Install git hooks (bashrs quality, pmat-book validation)
pmat hooks install

# Check hook status
pmat hooks status

# Dry-run to see what would be checked
pmat hooks install --dry-run

Hooks enforce:

  • Bash/Makefile safety (bashrs linting)
  • pmat-book validation (multi-language examples)
  • Documentation accuracy (zero hallucinations)

Features

  • 17+ Languages: Rust, TypeScript, Python, Go, Java, C/C++, Ruby, PHP, Swift, Kotlin, and more
  • AI-Ready Context: Generate deep context for Claude, GPT, and other LLMs
  • Technical Debt Grading (TDG): A+ through F scoring with 6 orthogonal metrics
  • Semantic Code Search: Natural language code discovery with hybrid search
  • Quality Gates: Pre-commit hooks, CI/CD integration, mutation testing
  • MCP Integration: 19 tools for Claude Code, Cline, and other MCP clients
  • Zero Configuration: Works out of the box on any codebase

Documentation

📖 PMAT Book - Complete guide with tutorials

Key chapters:


Examples

# Generate context for Claude/GPT
pmat context --output context.md --format llm-optimized

# Analyze TypeScript project
pmat analyze complexity --language typescript

# Technical debt grading with components
pmat analyze tdg --include-components

# Semantic search (natural language)
pmat embed sync ./src
pmat semantic search "error handling patterns"

# Validate documentation for hallucinations
pmat validate-readme --targets README.md

MCP Integration

PMAT provides 19 MCP tools for AI agents:

# Start MCP server
pmat mcp

# Use with Claude Code, Cline, or other MCP clients

Tools include: context generation, complexity analysis, TDG scoring, semantic search, code clustering, documentation validation, and more.

See MCP Tools Documentation for details.


Project Info

Built by: Pragmatic AI Labs
License: MIT
Repository: github.com/paiml/paiml-mcp-agent-toolkit
Issues: GitHub Issues

Current Version: v2.167.0 (Sprint 44 - Coverage Remediation)


Contributing

See ROADMAP.md for project status and future plans.

Quality Standards:

  • EXTREME TDD (RED → GREEN → REFACTOR)
  • 85%+ code coverage
  • Five Whys root cause analysis
  • Toyota Way principles (Jidoka, Genchi Genbutsu, Kaizen)
  • Zero tolerance for defects