A private, local AI assistant for your documentsโwithout sending data to the cloud

Users upload their PDF, DOCX, TXT, or notes (e.g., from Obsidian, Notion, or personal files) and receive a local AI assistant that:
- Answers questions about document content.
- Finds citations, summarizes sections, and compares files.
- Works completely offline on their computer (Mac, Windows, or Linux).
- No data is transmitted onlineโmaximum privacy.
-
๐ Document upload: PDF, TXT, Markdown
-
๐ฌ AI-powered chat based on your documents (RAG)
-
๐ต๏ธโโ๏ธ Complete privacy โ everything runs on your computer
-
๐ง Uses local LLM via Ollama (phi3, Mistral, Llama 3, etc.)
-
๐ Chat history is saved
-
๐ Simple web interface (or desktop app)
-
Language: Python (base) + Electron or Tauri (for GUI)
-
LLM: Ollama (phi3, Mistral, Llama 3)
-
Embeddings + RAG: ChromaDB or FAISS
-
Frontend: React + Vite (if using Tauri) or pure HTML/CSS for simplicity
-
Documents: PyPDF2, built-in parsers
-
Ollama (install and run)
-
Python 3.9+
-
pip
-
Free version (open-source):
-
Supports basic formats (TXT, PDF)
-
Works with small files
-
CLI interface
Paid "Pro" version (SaaS or desktop license)
-
Support for DOCX, PPTX, Excel, and Notion exports
-
Improved UI with chat history and tags
-
Syncing across devices (optional, with encryption)
-
Priority support and updates
-
Selling through Gumroad or your own website (~$15โ$29/time or $5/month)
Additionally:
-
GitHub Sponsors to support development
-
Partnerships with privacy software vendors (Proton, Tuta, etc.)
-
Lawyers, doctors, and researchers who work with confidential documents.
-
Product managers and analysts who analyze internal reports.
-
Regular users who are tired of ChatGPT "remembering" their data.
-
Growing interest in local LLMs (Ollama, LM Studio, Jan.ai).
-
Privacy concerns when using ChatGPT.
-
Many want an AI assistant but don't want to be dependent on the cloud.
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ LocalDocs AI (Desktop App) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโ
โ โ โ
โโโโโโโโโโโผโโโโโโ โโโโโโโโโโโผโโโโโโ โโโโโโโโโโโผโโโโโโ
โ Frontend โ โ Backend โ โ AI Engine โ
โ (Tauri/React)โ โ (FastAPI/Flask)โ โ (Ollama/Llama.cpp)โ
โโโโโโโโโโโโโโโโโ โโโโโโโโโฌโโโโโโโโ โโโโโโโโโฒโโโโโโโโ
โ โ
โโโโโโโโโผโโโโโโโโ โโโโโโโโโดโโโโโโโโ
โ Document โ โ Vector โ
โ Storage โ โ Database โ
โ (./docs/) โ โ (ChromaDB) โ
โโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโ
๐ Data flow:
- The user adds a PDF โ saves it to ./docs/.
- The system parses the text and breaks it into chunks.
- The chunks are embedded and saved in ChromaDB.
- When asked: โ the query is embedded โ relevant chunks are searched โ โ a prompt is generated โ sent to the local LLM โ โ a response is returned
LocalDocs AI
โ
โโโ core/
โ โโโ document_loader.py โ support PDF, TXT, MD
โ โโโ rag_engine.py โ RAG + chat history
โ โโโ chat_history.py โ history management
โ
โโโ api/
โ โโโ main.py โ FastAPI server
โ
โโโ static/ โ simple HTML interface
โ โโโ index.html
โ
โโโ docs/ โ user files
โโโ chroma_db/ โ vector database
Install:
pip install -r requirements.txt
And make sure Ollama is running and the model is loaded:
ollama pull phi3 # mistral, llama3
- Create a docs/ folder and place any PDF there (name it sample.pdf).
- Launch Ollama: ollama serve (it usually starts automatically).
- Run:
python main.py add docs/sample.pdf
python main.py ask "What is this document about?"
git clone https://github.com/mscbuild/local-docs-ai-agent.git
cd local-docs-ai-agent
pip install -r requirements.txt
cd api
uvicorn main:app --reload --port 8000
Open in your browser: http://localhost:8000
Usage
- Upload a PDF/TXT/MD file
- Ask questions: "What is this document about?", "Find the contract date," etc.
- Get answers from AI trained on your data
- All documents are stored locally
(./docs/)
- The vector database is on your disk
(./chroma_db/)
- Requests to LLM are processed through Ollama on your machine
- Not a single byte is lost to the internet
This project is open source. If you find it useful:
- โญ Star it on GitHub
- ๐ฌ Report bugs in Issues
- ๐ฐ Support the developer through GitHub Sponsors (coming soon)
License โ free to use for personal and commercial purposes.