Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 11 additions & 2 deletions src/diffusers/models/embeddings.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,13 +319,18 @@ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type="np"):
return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np", flip_sin_to_cos=False):
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np", flip_sin_to_cos=False, dtype=None):
"""
This function generates 1D positional embeddings from a grid.

Args:
embed_dim (`int`): The embedding dimension `D`
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
output_type (`str`, *optional*, defaults to `"np"`): Output type. Use `"pt"` for PyTorch tensors.
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): Whether to flip sine and cosine embeddings.
dtype (`torch.dtype`, *optional*): Data type for frequency calculations. If `None`, defaults to
`torch.float32` on MPS devices (which don't support `torch.float64`) and `torch.float64`
on other devices.

Returns:
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
Expand All @@ -341,7 +346,11 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np", flip_sin
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")

omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
# Auto-detect appropriate dtype if not specified
if dtype is None:
dtype = torch.float32 if pos.device.type == "mps" else torch.float64

omega = torch.arange(embed_dim // 2, device=pos.device, dtype=dtype)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)

Expand Down
Loading