Skip to content

cheolwanpark/claude-agent-toolkit

Repository files navigation

Claude Agent Toolkit

claude-code-sdk wrapper for enhanced developer experience with easy setup and runtime isolation using Docker

A Python framework that wraps claude-code-sdk to provide better developer experience through decorator-based tools, runtime isolation, and simplified agent development. Built for production safety with Docker containers that ensure controlled tool execution and consistent behavior across all environments.

Table of Contents

Why Claude Agent Toolkit?

The Problem

Working directly with claude-code-sdk presents two major challenges:

  1. Complex Tool Integration - Manual MCP server setup, connection handling, and tool registration
  2. Runtime Safety - Need for controlled tool execution with clean, isolated environments

The Solution

Claude Agent Toolkit solves these issues through:

  • 🎯 Decorator-Based Tools - Simple @tool decorator converts any Python function into a Claude-compatible tool
  • 🐳 Runtime Isolation - Docker containers provide safe, controlled execution with only your specified tools
  • ⚡ Zero Configuration - Automatic MCP server management and tool discovery

"An intuitive and stable development experience similar to Google's ADK"

See the Difference

Before (Direct claude-code-sdk):

# Manual tool naming and complex schema definition required
@tool("greet", "Greet a user", {"name": str})
async def greet_user(args):
    return {
        "content": [
            {"type": "text", "text": f"Hello, {args['name']}!"}
        ]
    }

# Tool functions and MCP server are decoupled - difficult to maintain at scale
server = create_sdk_mcp_server(
    name="my-tools",
    version="1.0.0",
    tools=[greet_user]
)

# At Runtime:
# ❌ Subprocess can access system tools (Read, LS, Grep)
# ❌ Manual environment configuration required
# ❌ No control over Claude Code's tool access
# ❌ Risk of unintended system interactions

After (Claude Agent Toolkit):

# Intuitive class-based tool definition with integrated MCP server
class CalculatorTool(BaseTool):
    @tool()
    async def add(self, a: float, b: float) -> dict:
        """Adds two numbers together"""
        return {"result": a + b}

# Single line agent creation with controlled tool access
agent = Agent(tools=[CalculatorTool()])

# At Runtime:
# ✅ Docker container runs only your defined tools
# ✅ No access to system tools (Read, LS, Grep)
# ✅ Clean, isolated, predictable execution environment
# ✅ Complete control over Claude Code's capabilities

Comparison Table

Feature claude-code-sdk Claude Agent Toolkit
Custom Tools Manual schema definition, No parallel execution support Simple and intuitive class-based definition with @tool decorator, Built-in parallel execution with parallel=True
Runtime Isolation No built-in isolation
You need to design your own
Docker by default
Allows only tools you explicitly added
Environment Consistency Manual environment setup
Explicit tool/option configuration required
Zero setup needed
Works out of the box
Setup Complexity ~20 lines just for ClaudeCodeOptions configuration ~25 lines for complete agent with calculator
Agent.run(verbose=True) shows all responses
Built-in Tools Build everything from scratch FileSystemTool with permission control
DataTransferTool for formatted output handling
Best For Using Claude Code as-is
Minimal dependencies only
Fast development
Using Claude Code as reasoning engine (like LangGraph agents)

Quick Start

from claude_agent_toolkit import Agent, BaseTool, tool

# 1. Create a custom tool with @tool decorator
class CalculatorTool(BaseTool):
    @tool()
    async def add(self, a: float, b: float) -> dict:
        """Adds two numbers together"""
        result = a + b
        return {
            "operation": f"{a} + {b}",
            "result": result,
            "message": f"The result of adding {a} and {b} is {result}"
        }

# 2. Create and run an agent
async def main():
    agent = Agent(
        system_prompt="You are a helpful calculator assistant",
        tools=[CalculatorTool()],
        model="sonnet"  # haiku, sonnet, or opus
    )

    result = await agent.run("What is 15 + 27?")
    print(result)  # Claude will use your tool and return the answer

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())

Installation & Setup

Prerequisites

  • Python 3.12+ with uv package manager
  • Docker Desktop (required for Docker executor, recommended)
  • Claude Code OAuth Token - Get from Claude Code

Install the Package

# Using pip
pip install claude-agent-toolkit

# Using uv (recommended)
uv add claude-agent-toolkit

# Using poetry
poetry add claude-agent-toolkit

Set Your OAuth Token

Get your token by running claude setup-token in your terminal, then:

export CLAUDE_CODE_OAUTH_TOKEN='your-token-here'

Quick Verification

# Clone examples (optional)
git clone https://github.com/cheolwanpark/claude-agent-toolkit.git
cd claude-agent-toolkit/src/examples/calculator
python main.py

Usage Examples

Basic Agent with Custom Tool

from claude_agent_toolkit import Agent, BaseTool, tool, ExecutorType

class MyTool(BaseTool):
    def __init__(self):
        super().__init__()
        self.counter = 0  # Explicit data management

    @tool()
    async def increment(self) -> dict:
        """Increment counter and return value"""
        self.counter += 1
        return {"value": self.counter}

# Docker executor (default, production-ready)
agent = Agent(tools=[MyTool()])

# Subprocess executor (faster startup, development)
agent = Agent(tools=[MyTool()], executor=ExecutorType.SUBPROCESS)

result = await agent.run("Increment the counter twice")

Model Selection

# Fast and efficient for simple tasks
weather_agent = Agent(
    tools=[weather_tool],
    model="haiku"
)

# Balanced performance (default)
general_agent = Agent(
    tools=[calc_tool, weather_tool],
    model="sonnet"
)

# Most capable for complex reasoning
analysis_agent = Agent(
    tools=[analysis_tool],
    model="opus"
)

# Override per query
result = await weather_agent.run(
    "Complex weather pattern analysis",
    model="opus"
)

CPU-Intensive Operations

class HeavyComputeTool(BaseTool):
    @tool(parallel=True, timeout_s=120)
    def process_data(self, data: str) -> dict:
        """Heavy computation"""
        # Sync function - runs in separate process
        import time
        time.sleep(5)  # Simulate heavy work
        return {"processed": f"result_{data}"}

Error Handling

from claude_agent_toolkit import (
    Agent, BaseTool,
    ConfigurationError, ConnectionError, ExecutionError
)

try:
    agent = Agent(tools=[MyTool()])
    result = await agent.run("Process my request")

except ConfigurationError as e:
    print(f"Setup issue: {e}")  # Missing token, invalid config

except ConnectionError as e:
    print(f"Connection failed: {e}")  # Docker, network issues

except ExecutionError as e:
    print(f"Execution failed: {e}")  # Tool failures, timeouts

Core Features

  • 🎯 Decorator-Based Tools - Transform any Python function into a Claude tool with simple @tool decorator
  • 🔌 External MCP Integration - Connect to existing MCP servers via stdio and HTTP transports
  • 🐳 Isolated Execution - Docker containers ensure consistent behavior across all environments
  • ⚡ Zero Configuration - Automatic MCP server management, port selection, and tool discovery
  • 🔧 Flexible Execution Modes - Choose Docker isolation (production) or subprocess (development)
  • 📝 Explicit Data Management - You control data persistence with no hidden state
  • ⚙️ CPU-bound Operations - Process pools for heavy computations with parallel processing
  • 🎭 Multi-tool Coordination - Claude Code intelligently orchestrates multiple tools
  • 🏗️ Production Ready - Built for scalable, reliable agent deployment

Architecture

Execution Modes

Feature Docker (Default) Subprocess
Isolation Full container isolation Process isolation only
Setup Time ~3 seconds ~0.5 seconds
Use Case Production, testing Development, CI/CD
Requirements Docker Desktop None

Component Overview

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Your Tools    │    │      Agent       │    │  Claude Code    │
│  (MCP Servers)  │◄──►│   (Orchestrator) │◄──►│   (Reasoning)   │
└─────────────────┘    └──────────────────┘    └─────────────────┘
        │                       │                       │
        ▼                       ▼                       ▼
┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Host Process  │    │ Docker Container │    │ Claude Code API │
│   (localhost)   │    │   or Subprocess  │    │   (claude.ai)   │
└─────────────────┘    └──────────────────┘    └─────────────────┘

External MCP Server Integration

Connect to Existing MCP Servers

Integrate with any existing MCP server using stdio or HTTP transport:

from claude_agent_toolkit import Agent
from claude_agent_toolkit.tool.mcp import StdioMCPTool, HttpMCPTool

# Connect to an MCP server via command execution
everything_server = StdioMCPTool(
    command="npx",
    args=["-y", "@modelcontextprotocol/server-everything"],
    name="everything"
)

# Connect to an HTTP MCP server
http_server = HttpMCPTool(
    url="http://localhost:3001/mcp",
    name="my-http-server"
)

# Mix with your custom tools
agent = Agent(
    system_prompt="You can use both custom and external tools",
    tools=[MyCustomTool(), everything_server, http_server]
)

result = await agent.run("Use the everything server to echo 'Hello World'")

When to Use External MCP Integration

  • Existing MCP Ecosystem: Leverage community MCP servers and tools
  • Language Diversity: Use MCP servers written in Node.js, Python, Go, etc.
  • Specialized Tools: Integrate domain-specific tools without reimplementation
  • Rapid Prototyping: Quickly test MCP servers before building custom equivalents
  • Service Architecture: Connect to MCP servers running as microservices

Supported Transports

Transport Use Case Example
Stdio Command-line tools, npm packages npx servers, Python scripts
HTTP Web services, microservices REST APIs, containerized servers

Built-in Tools

FileSystemTool - Secure File Operations

Control exactly what files your agent can access with pattern-based permissions.

from claude_agent_toolkit.tools import FileSystemTool

# Define access patterns
permissions = [
    ("*.txt", "read"),          # Read all text files
    ("data/**", "write"),       # Write to data directory
    ("logs/*.log", "read"),     # Read log files only
]

fs_tool = FileSystemTool(
    permissions=permissions,
    root_dir="/path/to/workspace"  # Restrict to directory
)

agent = Agent(
    system_prompt="You are a file manager assistant",
    tools=[fs_tool]
)

result = await agent.run(
    "List all text files and create a summary in data/report.txt"
)

DataTransferTool - Type-Safe Data Transfer

Transfer structured data between Claude agents and your application using Pydantic models.

from claude_agent_toolkit.tools import DataTransferTool
from pydantic import BaseModel, Field
from typing import List

class UserProfile(BaseModel):
    name: str = Field(..., description="Full name")
    age: int = Field(..., ge=0, le=150, description="Age in years")
    interests: List[str] = Field(default_factory=list)

# Create tool for specific model
user_tool = DataTransferTool.create(UserProfile, "UserProfileTool")

agent = Agent(
    system_prompt="You handle user profile data transfers",
    tools=[user_tool]
)

# Transfer data through Claude
await agent.run(
    "Transfer user: Alice Johnson, age 28, interests programming and hiking"
)

# Retrieve validated data
user_data = user_tool.get()
if user_data:
    print(f"Retrieved: {user_data.name}, age {user_data.age}")

Creating Custom Tools

Basic Tool Pattern

from claude_agent_toolkit import BaseTool, tool

class MyTool(BaseTool):
    def __init__(self):
        super().__init__()  # Server starts automatically
        self.data = {}      # Explicit data management

    @tool()
    async def process_async(self, data: str) -> dict:
        """Async operation"""
        # Async operations for I/O, API calls
        return {"result": f"processed_{data}"}

    @tool(parallel=True, timeout_s=60)
    def process_heavy(self, data: str) -> dict:
        """CPU-intensive operation"""
        # Sync function - runs in separate process
        # Note: New instance created, self.data won't persist
        import time
        time.sleep(2)
        return {"result": f"heavy_{data}"}

Context Manager Support

# Single tool with guaranteed cleanup
with MyTool() as tool:
    agent = Agent(tools=[tool])
    result = await agent.run("Process my data")
# Server automatically cleaned up

# Multiple tools
with MyTool() as calc_tool, WeatherTool() as weather_tool:
    agent = Agent(tools=[calc_tool, weather_tool])
    result = await agent.run("Calculate and check weather")
# Both tools cleaned up automatically

FAQ

What is Claude Agent Toolkit?

A Python framework that lets you build AI agents using Claude Code with custom tools. Unlike generic agent frameworks, this specifically leverages Claude Code's advanced reasoning capabilities with your existing subscription.

How is this different from other agent frameworks?

  • Uses Claude Code: Leverages Claude's production infrastructure and reasoning
  • MCP Protocol: Industry-standard tool integration, not proprietary APIs
  • Explicit Data: You control data persistence, no hidden state management
  • Production Focus: Built for real deployment, not just experiments

Do I need Docker?

Docker is recommended for production but not required. Use ExecutorType.SUBPROCESS for subprocess execution:

agent = Agent(tools=[my_tool], executor=ExecutorType.SUBPROCESS)

It also runs in an isolated directory to ensure maximum isolation.

Which model should I use?

  • haiku: Fast, cost-effective for simple operations
  • sonnet: Balanced performance, good default choice
  • opus: Maximum capability for complex reasoning

How do I handle errors?

The framework provides specific exception types:

from claude_agent_toolkit import ConfigurationError, ConnectionError, ExecutionError

try:
    result = await agent.run("task")
except ConfigurationError:
    # Missing OAuth token, invalid config
except ConnectionError:
    # Docker/network issues
except ExecutionError:
    # Tool failures, timeouts

Can I use multiple tools together?

Yes! Claude Code intelligently orchestrates multiple tools:

agent = Agent(tools=[calc_tool, weather_tool, file_tool])
result = await agent.run(
    "Calculate the average temperature and save results to report.txt"
)

Testing

The framework is validated through comprehensive examples rather than traditional unit tests. Each example demonstrates specific capabilities and serves as both documentation and validation.

Run Examples

# Clone the repository
git clone https://github.com/cheolwanpark/claude-agent-toolkit.git
cd claude-agent-toolkit

# Set your OAuth token
export CLAUDE_CODE_OAUTH_TOKEN='your-token-here'

# Run different examples
cd src/examples/calculator && python main.py     # Stateful operations, parallel processing
cd src/examples/weather && python main.py       # External API integration
cd src/examples/subprocess && python main.py    # No Docker required
cd src/examples/filesystem && python main.py    # Permission-based file access
cd src/examples/datatransfer && python main.py  # Type-safe data transfer
cd src/examples/mcp && python main.py           # External MCP server integration

Example Structure

src/examples/
├── calculator/     # Mathematical operations with state management
├── weather/        # External API integration (OpenWeatherMap)
├── subprocess/     # Subprocess executor demonstration
├── filesystem/     # FileSystemTool with permissions
├── datatransfer/   # DataTransferTool with Pydantic models
├── mcp/           # External MCP server integration (stdio, HTTP)
└── README.md      # Detailed example documentation

Docker Validation

Examples can run with both executors:

# Docker executor (default)
python main.py

# Subprocess executor (faster startup)
# Examples automatically use subprocess when Docker unavailable

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes and validate with examples
  4. Run examples to verify functionality
  5. Submit a pull request

Development Setup

git clone https://github.com/cheolwanpark/claude-agent-toolkit.git
cd claude-agent-toolkit
uv sync --group dev

# Validate your changes by running examples
export CLAUDE_CODE_OAUTH_TOKEN='your-token'
cd src/examples/calculator && python main.py

License

This project is licensed under the MIT License - see the LICENSE file for details.


Created by: Cheolwan ParkBlog: Project Background

Links: HomepageClaude CodeIssuesModel Context Protocol